
Be Aware of Your Leaders

Shir Cohen1,2, Rati Gelashvili1, Lefteris Kokoris Kogias1,3, Zekun Li1, Dahlia
Malkhi1, Alberto Sonnino1, and Alexander Spiegelman1

1 Novi Research
2 Technion

3 IST Austria

Abstract. Advances in blockchains have influenced the State-Machine-
Replication (SMR) world and many state-of-the-art blockchain-SMR so-
lutions are based on two pillars: Chaining and Leader-rotation. A prede-
termined round-robin mechanism used for Leader-rotation, however, has
an undesirable behavior: crashed parties become designated leaders in-
finitely often, slowing down overall system performance. In this paper, we
provide a new Leader-Aware SMR framework that, among other desir-
able properties, formalizes a Leader-utilization requirement that bounds
the number of rounds whose leaders are faulty in crash-only executions.

We introduce Carousel, a novel, reputation-based Leader-rotation solu-
tion to achieve Leader-Aware SMR. The challenge in adaptive Leader-
rotation is that it cannot rely on consensus to determine a leader, since
consensus itself needs a leader. Carousel uses the available on-chain in-
formation to determine a leader locally and achieves Liveness despite this
difficulty. A HotStuff implementation fitted with Carousel demonstrates
drastic performance improvements: it increases throughput over 2x in
faultless settings and provided a 20x throughput increase and 5x latency
reduction in the presence of faults.

1 Introduction

Recently, Byzantine agreement protocols in the eventually synchronous model
such as Tendermint [5], Casper FFG [6], and HotStuff [22], brought two impor-
tant concepts from the world of blockchains to the traditional State Machine
Replication (SMR) [12] settings, Leader-rotation and Chaining. More specifi-
cally, these algorithms operate by designating one party as leader of each round
to propose the next block of transactions that extends a chained sequence of
blocks. Both properties depart from the approach used by classical protocols
such as PBFT [7], Multi-Paxos [13] and Raft [17] (the latter two in benign set-
tings). In those solutions, a stable leader operates until it fails and then it is
replaced by a new leader. Agreement is formed on an immutable sequence of
indexed (rather than chained) transactions, organized in slots.

Leader-rotation is important in a Byzantine setting, since parties should not
trust each other for load sharing, reward management, resisting censoring of sub-
mitted transactions, or ordering requests fairly [11]. The advantage of Chaining

2 S. Cohen et al.

is that it simplifies the leader handover since in the common case the chain
eliminates the need for new leaders to catch up with outcomes from previous
slots.

In the permissioned SMR settings [1], most existing Leader-rotation mecha-
nisms use a round-robin approach to rotate leaders [8, 21, 22]. This guarantees
that honest parties get a chance to be leaders infinitely often, which is suffi-
cient to drive progress and satisfy Chain-quality [10]. Roughly speaking, the
latter stipulates that the number of blocks committed to the chain by honest
parties is proportional to the honest nodes’ percentage. The drawback of such
a mechanism is that it does not bound the number of faulty parties which are
designated as leaders during an execution. This has a negative effect on latency
even in crash-only executions, as each crashed leader delays progress. Similarly
to XFT [14], we seek to improve the performance in such executions. Unlike
XFT, we also maintain Chain-quality to thwart Byzantine attacks.

In this paper, we propose a leader-rotation mechanism, Carousel, that enjoys
both worlds. Carousel satisfies non-zero Chain-quality, and at the same time,
bounds the number of faulty leaders in crash-only executions after the global
stabilization time (GST), a property we call Leader-utilization. The Carousel al-
gorithm leverages Chaining to execute purely locally using information available
on the chain, avoiding any extra communication. To capture all requirements,
we formalize a Leader-Aware SMR problem model, which alongside Agreement,
Liveness and Chain-quality, also requires Leader-utilization. We prove that Carousel
satisfies the Leader-Aware SMR requirements.

The high-level idea to satisfy Leader-utilization is to track active parties
via the records of their participation (e.g. signatures) at the committed chain
prefix and elect leaders among them. However, if done naively, the adversary
can exploit this mechanism to violate Liveness or Chain-quality. The challenge
is that there is no consensus on a committed prefix to determine a leader, since
consensus itself needs a leader. Diverging local views on committed prefixes may
be effectuated, for instance, by having a Byzantine leader reveal an updated
head of the chain to a subset of the honest parties. Hence, Carousel may not have
agreement on the leaders of some rounds, but nevertheless guarantees Liveness
and Leader-utilization after GST.

To focus on our leader-rotation mechanism, we abstract away all other SMR
components by defining an SMR framework. Similarly to [20], we capture the
logic and properties of forming and certifying blocks of transactions in each
round in a Leader-based round (LBR) abstraction, and rely on a Pacemaker
abstraction [4,15,16] for round synchronization. We prove that when instantiated
into this framework, Carousel yields a Leader-Aware SMR protocol. Specifically,
we show (1) for Leader-utilization: at most O(f2) faulty leaders may be elected
in crash-only executions (after GST); and (2) for Chain-quality: one out of O(f)
blocks is authored by an honest party in the worst-case. Note that in practice
Chain-quality guarantees are much better since the worst case scenario requires
the adversary to posses an unrealistic power.

Be Aware of Your Leaders 3

We provide an implementation of Carousel in a HotStuff-based system and
an evaluation that demonstrates a significant performance improvement. Specifi-
cally, we get over 2x throughput increase in faultless settings, and 20x throughput
increase and 5x latency reduction in the presence of faults. Our mechanism is
adopted in the most recent version of DiemBFT [21], a deployed HotStuff-based
system.

2 Model and Problem Definition

We consider a message-passing model with a set of n parties Π = {p1, . . . , pn},
out of which f < n

3 are subject to failures. A party is crashed if it halts prema-
turely at some point during an execution. If it deviates from the protocol it is
Byzantine. An honest party never crashes or becomes Byzantine. We say that
an execution is crash-only if there are no Byzantine failures therein.

For the theoretical analysis we assume an eventually synchronous communi-
cation model [9] in which there is a global stabilization time (GST) after which
the network becomes synchronous. That is, before GST the network is com-
pletely asynchronous, while after GST messages arrive within a known bounded
time, denoted as δ.

As we later describe, we abstract away much of the SMR implementation
details by defining and using primitives. Therefore, our Leader-rotation solution
is model agnostic and the adversarial model depends on the implementation
choices for those primitives.

2.1 Leader-Aware SMR

In this section we introduce some notation and then define the Leader-Aware
SMR problem. Roughly speaking, Leader-Aware SMR captures the desired prop-
erties of the Leader-rotation mechanism in SMR protocols that are leader-based.

An SMR protocol consists of a set of parties aiming to maintain a growing
chain of blocks. Parties participate in a sequence of rounds, attempting to form
a block per round. In Leader-Aware SMR, each round is driven by a leader.
We capture these rounds via the Leader-based round (LBR) abstraction defined
later.

A block consists of transactions and the following meta-data:

– A (cryptographic) link to a parent block. Thus, each block implicitly defines
a chain to the genesis block.

– A round number in which the block was formed.
– The author id of the party that created the block.
– A certificate that (cryptographically) proves that 2f + 1 parties endorsed

the block in the given round and with the given author. We assume that it
is possible to obtain the set of 2f + 1 endorsing parties4.

4 This can be achieved by multi-signature schemes which are practically as efficient as
threshold signatures [3].

4 S. Cohen et al.

Note that having a round number and the author id as a part of the block is not
strictly necessary, but they facilitate formalization of properties and analysis.
For example, an honest block is defined as a block authored by an honest party
and a Byzantine block is a block authored by a Byzantine party.

We assume a predicate certified(B, r) ∈ {true, false} that locally checks
whether the block has a valid certificate, i.e. it has 2f+1 endorsements for round
r. If certified(B, r) = true we say that B is a certified block of round r. When
clear from context, we say that B is certified without explicitly mentioning the
round number.

An SMR protocol does not terminate, but rather continues to form blocks.
Each block B determines its implied chain starting from B to the genesis block
via the parent links. We use notation B −→ B′, saying B′ extends B, if block
B is on B′’s implied chain. Honest parties can commit blocks in some rounds
(but usually not all). A committed block indirectly commits its implied chain.
An SMR protocol must satisfy the following:

Definition 1 (Leader-Aware SMR).

– Liveness: An unbounded number of blocks are committed by honest parties.

– Agreement: If an honest party pi has committed a block B, then for any
block B′ committed by any honest party pj either B −→ B′ or B′ −→ B.

– Chain-quality: For any block B committed by an honest party pi, the pro-
portion of Byzantine blocks on B’s implied chain is bounded.

– Leader-Utilization: In crash-only executions, after GST, the number of
rounds r for which no honest party commits a block formed in r is bounded.

The first two properties are common to SMR protocols. While most SMR al-
gorithms satisfy the above mentioned Liveness condition, a stronger Liveness
property can be defined, requiring that each honest party commits an unbounded
number of blocks. This property can be easily be achieved by an orthogonal for-
warding mechanism, where each honest leader that creates a block explicitly
sends it to all other parties. A notion of Chain-quality that bounds the adver-
sarial control over chain contents was first suggested by Garay et al. [10]. We
introduce the Leader-utilization property to capture the quality of the Leader-
rotation mechanism in crash-only executions. Note that although it is tempting
to define leader utilization for Byzantine executions as well, it seems impossi-
ble to do so without failure detectors. Byzantine parties can decide not to form
a block whenever they become leaders. This reduces to the question – can we
bound the number of adversarial leaders? the answer is, unfortunately, no.

3 Leader-Aware SMR: The Framework

In order to isolate the Leader-rotation problem in Leader-Aware SMR proto-
cols, we abstract away the remaining logic into two components. First, similar
to [19, 20] we capture the logic to form and commit blocks by the Leader-based

Be Aware of Your Leaders 5

round (LBR) abstraction (Section 3.1). We follow [4,16] and capture round syn-
chronization by the Pacemaker abstraction (Section 3.2). These two abstractions
can be instantiated with known implementations from existing SMR protocols.

In Section 3.3 we define the core API for Leader-rotation and combine it with
the above components to construct an SMR protocol. In Section 4 we present a
Leader-rotation algorithm that can be easily computed based on locally available
information and makes the construction a Leader-Aware SMR.

3.1 Leader-based round (LBR)

The LBR abstraction exposes to each party pi an API to invoke LBR(r, `),
where r ∈ N is a round number and ` is the leader of round r according to
party pi. Intuitively, a leader-based round captures an attempt by parties to
certify and commit a block formed by the leader5 – which naturally requires
sufficiently many parties to agree on the identity of the leader. We assume that
non-Byzantine parties can only endorse a block B with round number r and
author ` by calling LBR(r, `).

Every LBR invocation returns within ∆l > cδ time, where c depends on
the specific LBR implementation (i.e., each round requires a causal chain of
c messages to complete). That is, ∆l captures the inherent timeouts required
for eventually synchronous protocols. We say that round r has k ≤ n LBR-
synchronized(`) invocations if k honest parties invoke LBR(r, `) after GST and
within ∆l − cδ time of each other with the same party `6.

The return value of an LBR invocation in round r is always a block with a
round number r′ ≤ r. The intention is for LBR invocations to return gradually
growing committed chains. Occasionally, there is no progress, in which case the
invocations are allowed to return a committed block whose round r′ is smaller
than r. Formally, the output from LBR satisfies the following properties:

Definition 2 (LBR).

– Endorsement: For any block B and round r, if certified(B, r) = true,
then the set of endorsing parties of B contains 2f + 1 parties. 7

– Agreement: If B and B′ are certified blocks that are each returned to an
honest party from an LBR invocation, then either B −→ B′ or B′ −→ B.

– Progress: If there are k ≥ 2f+1 LBR-synchronized(`) invocations at round
r and ` is honest, then they all return a certified B with round number r
authored by `.

– Blocking: If a non-Byzantine party ` never invokes LBR(r, `), then no
LBR(r, `) invocation may return a certified block formed in round r.

5 Existing SMR protocols may have separate rounds (and even leaders) for forming
and committing blocks, but this distinction is not relevant for the purposes of the
paper and LBR abstraction is defined accordingly.

6 LBR-synchronized requires that the corresponding execution intervals have a shared
intersection lasting ≥ cδ time.

7 Note that Endorsement implies that although LBR can be invoked for round r with
more than one leader l, there is at most one author for a block in r.

6 S. Cohen et al.

– Reputation: If a non-Byzantine party p never invokes LBR for round r,
then any certified block B with round number r does not contain p among its
endorsers.

The LBR definition intends to capture just the key properties required for
round abstraction in SMR protocols but leaves room for various interesting be-
havior. For example, if the progress preconditions are not met at round r, then
some honest parties may return a block B for round r while others do not. More-
over, in this case the adversary can hide certified blocks from honest parties and
reveal them at any point via the LBR return values.

3.2 The Pacemaker

The Pacemaker [4, 15, 16] component is a commonly used abstraction, which
ensures that, after GST, parties are synchronized and participate in the same
round long enough to satisfy the LBR progress. We assume the following:

Definition 3 (Pacemaker). The Pacemaker eventually produces new round(r)
notifications at honest parties for each round r. Suppose for some round r all
new round(r) notifications at non-Byzantine parties occur after GST, the first
of which occurs at time Tf , and the last of which occurs at time Tl. Then no
non-Byzantine party receives a new round(r + 1) notification before Tl +∆p and
Tl − Tf ≤ δ. The Pacemaker can be instantiated with any parameter ∆p > 0.

To combine the LBR and Pacemaker components into an SMR protocol
in Section 3.3 we fix ∆p = ∆l. Note that by using the above definition, the result-
ing protocol is not responsive since parties wait∆p before advancing rounds. This
can easily be fixed by using a more general Pacemaker definitions from [4,15,16].
However, we chose the simplified version above for readability purposes since the
Pacemaker is orthogonal to the thesis of our paper.

3.3 Leader-rotation - the missing component

In Algorithm 1 we show how to combine the LBR and Pacemaker abstractions
into a leader-based SMR protocol. The missing component is the Leader-rotation
mechanism, which exposes a choose leader(r,B) API. It takes a round number
r ∈ N and a block B and returns a party p ∈ Π. The choose leader procedure
is locally computed by each honest party at the beginning of every round.

The Agreement property of Algorithm 1 follows immediately from the Agree-
ment property of LBR, regardless of choose leader implementation. In Ap-
pendix A we prove that Algorithm 1 satisfies liveness as long as all honest parties
follow the same choose leader procedure and that this procedure returns the
same honest party at all of them infinitely often. In the next section we instan-
tiate Algorithm 1 with Carousel: a specific choose leader implementation to
obtain a Leader-Aware SMR protocol. That is, we prove that Algorithm 1 with
Carousel satisfies liveness, Chain-quality, and Leader-utilization.

Be Aware of Your Leaders 7

Algorithm 1 Constructing SMR: code for party pi
1: commit head← genesis
2: upon new round (r) do
3: leader ← choose leader (r, commit head)
4: B ←LBR(r,leader)
5: if commit head −→ B then
6: commit B . all blocks in B’s implied chain that were not yet committed.
7: commit head← B

4 Carousel: A Novel Leader-Rotation Algorithm

In this section, we present Carousel– our Leader-rotation mechanism. The pseudo-
code is given in Algorithm 2, which combined with Algorithm 1 allows to obtain
the first Leader-Aware SMR protocol.

We use reputation to avoid crashed leaders in crash-only executions. Specif-
ically, at the beginning of round r, an honest party checks if it has committed
a block B with round number r − 1. In this case, the endorsers of B are guar-
anteed to not have crashed by round r − 1. For Chain-quality purposes, the f
latest authors of committed blocks are excluded from the set of endorsers, and
a leader is chosen deterministically from the remaining set.

If an honest party has not committed a block with round number r−1, it uses
a round-robin fallback scheme to elect the round r leader. Notice that different
parties may or may not have committed a block with round number r−1 before
round r. In fact, the adversary has multiple ways to cause such divergence, e.g.
Byzantine behavior, crashes, or message delays. As a result, parties can disagree
on the leader’s identity, and potentially compromise liveness. We prove, however,
that Carousel satisfies liveness, as well as leader utilization and Chain-quality.
Specifically, we show that (1) the number of rounds r for which no honest party
commits a block formed in r is bounded by O(f2); and (2) at least one honest
block is committed every 5f + 2 rounds. The argument is non-trivial since, for
example, we need to show that the adversary cannot selectively alternate the
fallback and reputation schemes to control the Chain-quality.

4.1 Correctness

Leader-Utilization. In this section, we are concerned with the protocol effi-
ciency against crash failures. We consider time after GST, and at most f parties
that may crash during the execution but follow the protocol until they crash
(i.e., non-Byzantine). We say that a party p crashes in round r if r + 1 is the
minimal number for which p does not invoke LBR in line 4. Accordingly, we
say that a party is alive at all rounds before it crashes. In addition, we say that
a round r occurs after GST if all new round (r) notifications at honest parties
occur after GST.

We start by introducing an auxiliary lemma which extends the LBR Progress
property for crash-only executions. Since in a crash-only case faulty parties follow

8 S. Cohen et al.

Algorithm 2 Leader-rotation: code for party pi
8: procedure choose leader(r, commit head)
9: last authors← ∅

10: if commit head.round number 6= r − 1 then
11: return (r mod n) . round-robin fallback

12: active← commit head.endorsers
13: block ← commit head
14: while |last authors| < f ∧ block 6= genesis do
15: last authors← last authors ∪ {block.author}
16: block ← block.parent

17: leader candidates← active \ last authors
18: return leader candidates.pick one() . deterministically pick from the set

the protocol before they crash, honest parties cannot distinguish between an
honest leader and an alive leader that has not crashed yet. Hence, the LBR
Progress property hold even if the leader crashes later in the execution. Formal
proof of the following technical lemma, using indistinguishability arguments,
appears in Appendix A.

Lemma 1. In a crash-only execution, let r be a round with k ≥ 2f + 1 LBR-
synchronized(`) invocations, such that ` is alive at round r, then these k invoca-
tions return a certified B with round number r authored by `.

Furthermore, if no party crashes in a given round and the preconditions of
the adapted LBR Progress conditions are met a block is committed in that round
and another alive leader is chosen.

Lemma 2. If the preconditions of Lemma 1 hold and no party crashes in round
r, then k ≥ 2f + 1 honest parties commit a block for round r and return the
same leader `′ at line 3 of round r + 1 and `′ is alive at round r.

Proof. By Lemma 1, k honest parties return from LBR(r, `) with a certified
block B with round number r authored by `. Then, since commit head −→ B,
they all commit B at line 6 of round r+1. By the LBR Reputation property, the
set of B’s endorsers does not include parties that crashed in rounds < r. Since
no party crashes in round r, B’s endorsers are all alive in round r. Since these
2f + 1 parties each committed block B with round number r, in choose leader

in Algorithm 1, they all use the reputation scheme (line 18) to choose the leader
of round r + 1, that we showed is alive at round r.

Next, we utilize the latter to prove that in a round with no crashes, it is
impossible for a minority of honest parties to return with a certified block from
an LBR instance. Namely, either no honest party returns a block, or at least
2f + 1 of them do.

Lemma 3. In a crash-only execution, let r be a round after GST in which no
party crashes. If one honest party returns from LBR with a certified block B
with round number r, then 2f + 1 honest parties return with B.

Be Aware of Your Leaders 9

Proof. Assume an honest party returns a certified block B with round number
r after invoking LBR(r, `). By the LBR Blocking property, ` itself must have
invoked LBR(r, `) and by assumption it was alive at round r. By the LBR
Endorsement property, the set of endorsing parties of B contains 2f + 1 parties.
Since we consider a crash-only execution, it follows by assumption that 2f +
1 party called LBR(r, `). Due to the use of Pacemaker, these calls are LBR-
synchronized(`) invocations. Finally, by Lemma 1 all these calls return a certified
B with round number r authored by `.

We prove that in a window of f + 2 rounds without crashes, there must be a
round with the sufficient conditions for a block to be committed for that round.

Lemma 4. In a crash-only execution, let R be a round after GST such that no
party crashes between rounds R and R+ f + 2 (including). There exists a round
R ≤ r ≤ R+ f + 2 for which there are 2f + 1 LBR-synchronized(`) invocations
with a leader ` that is alive at round r.

Proof. First, let us consider the LBR invocations for round R. By Lemma 3,
if one honest party returns with a block B with round number R, then 2f + 1
honest parties return with B, commit it and update commit head accordingly
(line 7). In this case, there are 2f+1 choose leader(R+1, B) invocations, which
all return at line 18. Otherwise, no party return a block with round number
R, and thus they all return at line 11. By the code and since a block implies
a unique chain, in both cases 2f + 1 honest parties return the same leader
` in choose leader(R + 1, B) (either by reputation or round-robin). By the
Pacemaker guarantees and since R + 1 occurs after GST, there are at least
2f + 1 LBR-synchronized(`) invocations. If ` is alive at round R + 1, we are
done. Otherwise, ` must have been crashed before round R by the alive definition
and lemma assumptions. Thus, by the LBR Blocking property no honest party
commits a block for round R and they all choose the same leader for the following
round at line 11. The lemma follows by applying the above argument for R +
f + 2−R+ 1 = f + 1 rounds.

Finally, we bound by O(f2) the total number of rounds in a crash-only exe-
cution for which no honest party commits a block:

Lemma 5. Consider a crash-only execution. After GST, the number of rounds
r for which no honest party commits a block formed in r is bounded by O(f2).

Proof. Consider a crash-only execution and let R1, R2, . . . Rk the rounds after
GST in which parties crash (k ≤ f). For ease of presentation we call a round
for which no honest party commits a block formed in r a skipped round. We
prove that the number of skipped rounds between Ri and Ri+1 for 1 ≤ i < k is
bounded. If Ri+1 − Ri < f + 4, then there are at most f + 4 rounds and hence
at most f + 4 skipped rounds. Otherwise, we show that at most f + 2 rounds
are skipped between rounds Ri and Ri+1.

First, by Lemma 4, there exists a round Ri < Ri + 1 ≤ r ≤ Ri + 1 + f + 2 <
Ri+1 for which there are 2f + 1 LBR-synchronized(`) invocations with a leader

10 S. Cohen et al.

` that is alive at round r. By Lemma 2, since no party crashes in round r,
2f + 1 honest parties return the same leader `′ at line 3 of round r + 1 and
`′ is alive at round r. Since no party crashes at round r + 1 as well (because
Ri+1−Ri ≥ f + 4), `′ is alive at round r+ 1. By the Pacemaker guarantees and
since we consider rounds after GST, we conclude that there are at least 2f + 1
LBR-synchronized(`′) invocations for round r + 1. By Lemma 2 applied again
for round r + 1, 2f + 1 honest parties commit a block for round r + 1. Thus,
round r+ 1 is not skipped. We repeat the same arguments until round Ri+1, and
conclude that in each of these rounds a block is committed. Hence, the rounds
that can possibly be skipped between Ri and Ri+1 are Ri ≤ r′ < r. Thus there
are O(f) skipped round between Ri and Ri+1. For Rk we use similar arguments
but since no party crashes after Rk, we apply Lemma 2 indefinitely. We similarly
conclude that there are O(f) skipped rounds after Rk. All in all, since k ≤ f ,
we get O(f2) skipped rounds.

We immediately conclude the following:

Corollary 1. Algorithm 1 with Algorithm 2 satisfies Leader-utilization.

Chain-Quality. For the purposes of the Chain-quality proof, we say that a
block is committed when some honest party commits it. We say that a block
B with round number r is immediately committed if an honest party commits
B in round r. When we refer to a leader elected in of Algorithm 2 from the
round-robin mechanism we mean line 11, and when we refer to a leader elected
from the reputation mechanism, we mean line 18.

We begin by showing that each round assigned with an honest round-robin
leader implies a committed block in that round or the one that precedes it (not
necessarily an honest block).

Lemma 6. Let r be a round after GST such that pi = (r mod n) is honest.
Then, either a Byzantine block with round number r− 1 or an honest block with
round number r − 1 or r is immediately committed.

Proof. If a block is immediately committed with round number r − 1 then we
are done. Otherwise, no honest party commits a block with round number r− 1
in round r − 1, and they all elect the round r leader ` using the round-robin
mechanism. By the assumption, ` is honest.

By the Pacemaker, all honest invocations of LBR(r, `) in line 4 are LBR-
synchronized(`). Since there are at least 2f + 1 honest parties, by the LBR
Progress property, all honest invocations return the same certified block B with
round number r authored by `. Then, the honest parties commit B at line 6.

If there are two consecutive rounds assigned with honest round-robin leaders
and in addition the last f committed blocks are Byzantine, then an honest block
follows, as proven in the following lemma.

Be Aware of Your Leaders 11

Lemma 7. Let r′ be a round after GST such that pi = (r′ mod n) and pj =
(r′ + 1 mod n) are honest. Suppose f blocks with round numbers in [r, r′) with
different Byzantine authors are committed. For a block B with round number
r′ or r′ + 1 that is immediately committed, there is an honest block with round
number [r, r′ + 1] on B’s implied chain.

Proof. By the LBR endorsement assumption and property, the author of block
B should be either a reputation-based, or a round-robin leader of round r′ or
r′ + 1. If it is a round-robin leader, then by the lemma assumption, the leader
is honest and since B is the head of its implied chain, the proof is complete.
Thus, in the following we assume that B’s author is a reputation-based leader.
By the SMR Agreement property and the lemma assumption, B’s implied chain
contains f blocks with different Byzantine authors and rounds numbers in [r, r′).
By the code of the reputation-based mechanism, either all f Byzantine authors
are excluded from the leader candidates which implies that B has an honest
author, or that there is an honest block with round number in [r, r′) on B’s
implied chain.

Lastly, the following lemma proves that in any window of 5f + 2 rounds an
honest block is committed.

Lemma 8. Let r be a round after GST. At least one honest block is committed
with a round number in [r, r + 5f + 2].

Proof. Suppose for contradiction that no honest block with round number in
[r, r + 5f + 2] is committed. There are at least f rounds r′ in [r, r + 3f + 1),
such that rounds r′− 1 and r′ are allocated an honest leader by the round-robin
mechanism. By Lemma 6, a block with round number r′−1 or r′ is immediately
committed. Due to Lemma 6 and the contradiction assumption, for any such
round r′, a Byzantine block with round number r′−1 is immediately committed.
Since r′−1 has an honest round-robin leader, the block must be committed from
the reputation mechanism.

It follows that f Byzantine blocks with round numbers in [r, r + 3f + 1) are
immediately committed from the reputation mechanism, and consequently, they
all must have different authors. Note that there exists r′ ∈ [r+3f+1, r+5f+2)
(in a window of 2f + 1 rounds), such that the round-robin mechanism allocates
honest leaders to rounds r′ and r′ + 1. By Lemma 6, a block B with round
number r′ or r′ + 1 is immediately committed. Lemma 7 concludes the proof.

We conclude the following:

Corollary 2. Algorithm 1 with Algorithm 2 satisfies Chain-quality and Live-
ness.

Taken jointly, Corollary 1, Corollary 2, and the Agreement property proved
in Section 3.3 yield the following theorem:

Theorem 1. Algorithm 1 with Algorithm 2 implements Leader-Aware SMR.

12 S. Cohen et al.

5 Implementation

We implement Carousel on top of a high-performance open-source implementa-
tion of HotStuff8 [22]. We selected this implementation because it implements
a Pacemaker [22], contrarily to the implementation used in the original Hot-
Stuff paper9. Additionally, it provides well-documented benchmarking scripts
to measure performance in various conditions, and it is close to a production
system (it provides real networking, cryptography, and persistent storage). It
is implemented in Rust, uses Tokio10 for asynchronous networking, ed25519-
dalek11 for elliptic curve based signatures, and data-structures are persisted
using RocksDB12. It uses TCP to achieve reliable point-to-point channels, nec-
essary to correctly implement the distributed system abstractions. By default,
this HotStuff implementation uses traditional round-robin to elect leaders; we
modify its LeaderElector module to use Carousel instead. Implementing our
mechanism requires adding less than 200 LOC, and does not require any extra
protocol message or cryptographic tool. We are open-sourcing Carousel13 along
with any measurements data to enable reproducible results14.

6 Evaluation

We evaluate the throughput and latency of HotStuff equipped Carousel through
experiments on Amazon Web Services (AWS). We then show how it improves
over the baseline round-robin leader-rotation mechanism. We particularly aim
to demonstrate that Carousel (i) introduces no noticeable performance overhead
when the protocol runs in ideal conditions (that is, all parties are honest) and
with a small number of parties, and (ii) drastically improves both latency and
throughput in the presence of crash-faults. Note that evaluating BFT protocols
in the presence of Byzantine faults is still an open research question [2].

We deploy a testbed on AWS, using m5.8xlarge instances across 5 different
AWS regions: N. Virginia (us-east-1), N. California (us-west-1), Sydney (ap-
southeast-2), Stockholm (eu-north-1), and Tokyo (ap-northeast-1). Parties are
distributed across those regions as equally as possible. Each machine provides
10Gbps of bandwidth, 32 virtual CPUs (16 physical core) on a 2.5GHz, Intel
Xeon Platinum 8175, 128GB memory, and run Linux Ubuntu server 20.04.

In the following sections, each measurement in the graphs is the average of
5 independent runs, and the error bars represent one standard deviation. Our
baseline experiment parameters are 10 honest parties, a block size of 500KB, a

8 https://github.com/asonnino/hotstuff
9 https://github.com/hot-stuff/libhotstuff

10 https://tokio.rs
11 https://github.com/dalek-cryptography/ed25519-dalek
12 https://rocksdb.org
13 https://github.com/asonnino/hotstuff/tree/leader-reputation
14 https://github.com/asonnino/hotstuff/tree/leader-reputation/data

https://github.com/asonnino/hotstuff
https://github.com/hot-stuff/libhotstuff
https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org
https://github.com/asonnino/hotstuff/tree/leader-reputation
https://github.com/asonnino/hotstuff/tree/leader-reputation/data

Be Aware of Your Leaders 13

0 10k 20k 30k 40k 50k 60k 70k 80k
Throughput (tx/s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

La
te

nc
y

(s
)

Round-Robin, 10 nodes
Round-Robin, 20 nodes
Round-Robin, 50 nodes
Carousel, 10 nodes
Carousel, 20 nodes
Carousel, 50 nodes

Fig. 1. Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with 10, 20, 50 par-
ties. No party faults, 500KB maximum block size and 512B transaction size.

transaction size of 512B, and one benchmark client per party submitting trans-
actions at a fixed rate for a duration of 5 minutes. We then crash and vary the
number of parties through our experiments to illustrate their impact on perfor-
mance. The leader timeout value is set to 5 seconds for runs with 10 and 20
parties and increased to 10 seconds for runs with 50 parties. When referring to
latency, we mean the time elapsed from when the client submits the transaction
to when the transaction is committed by one party. We measure it by tracking
sample transactions throughout the system.

6.1 Benchmark in Ideal Conditions

Figure 1 depicts the performance of HotStuff with both Carousel and the baseline
round-robin running with 10, 20, and 50 honest parties. For runs with a small
number of parties (e.g., 10), the performance of the baseline round-robin HotStuff
is similar to HotStuff equipped with Carousel. We observe a peak throughput
around 70,000 tx/s with a latency of around 2 seconds. This illustrates that the
extra code required to implement Carousel has negligible overhead and does not
degrade performance when the total number of parties is small. When increasing
the system’s size (to 20 and 50 parties), HotStuff with Carousel greatly outper-
forms the baseline: the bigger the system’s size, the bigger the performance
improvement. With 50 nodes, the throughput of our mechanism-based HotStuff
increases by over 2x with respect to the baseline, and remains comparable to
the 10-parties testbed. After a few initial timeouts, Carousel has the benefit to
focus on electing performant leaders. Leaders on more remote geo-locations that
are typically slower are elected less often, the protocol is thus driven by the
most performant parties. Similar ideas were presented in [18] in the context of
distributed data storage, where a leader placement was optimized based on repli-
cas’ locations. In our experiments, latency is similar for both implementations
and around 2-3 seconds.

14 S. Cohen et al.

0 10k 20k 30k 40k 50k 60k 70k
Throughput (tx/s)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

La
te

nc
y

(s
)

Round-Robin, 10 nodes
Round-Robin, 10 nodes (1 faulty)
Round-Robin, 10 nodes (3 faulty)

Carousel, 10 nodes
Carousel, 10 nodes (1 faulty)
Carousel, 10 nodes (3 faulty)

Fig. 2. Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with 10 parties. Zero,
one and three party faults, 500KB maximum block size and 512B transaction size.

6.2 Performance under Faults

Figure 2 depicts the performance of HotStuff with both Carousel and the base-
line round-robin when a set of 10 parties suffers 1 or 3 crash-faults (the maxi-
mum that can be tolerated). The baseline round-robin HotStuff suffers a massive
degradation in throughput as well as a dramatic increase in latency. For three
faults, the throughput of the baseline HotStuff drops over 30x and its latency in-
creases 5x compared to no faults. In contrast, HotStuff equipped with Carousel
maintains a good level of throughput: our mechanism does not elect crashed
leaders, the protocol continues to operate electing leaders from the remaining
active parties, and is not overly affected by the faulty ones. The reduction in
throughput is in great part due to losing the capacity of faulty parties. When
operating with 3 faults, Carousel provides a 20x throughput increase and about
5x latency reduction with respect to the baseline round-robin.

Figure 3 depicts the evolution of the performance of HotStuff with both
Carousel and the baseline round-robin when gradually crashing nodes through
time. For roughly the first minute, all parties are honest; we then crash 1 party
(roughly) every minute until a maximum of 3 parties are crashed. The input
transaction rate is fixed to 10,000 tx/s throughout the experiment. Each data
point is the average over intervals of 10 seconds. For roughly the first minute
(when all parties are honest), both systems perform ideally, timely committing all
input transactions. Then, as expected, the baseline round-robin HotStuff suffers
from temporary throughput losses when a crashed leader is elected. Similarly, its
latency increases with the number of faulty parties and presents periods where no
transactions are committed at all. In contrast, HotStuff equipped with Carousel
delivers a stable throughput by quickly detecting and eliminating crashed lead-
ers. Its latency is barely affected by the faulty parties. This graph clearly illus-
trates how Carousel allows HotStuff to deliver a seamless client experience even
in the presence of faults.

Be Aware of Your Leaders 15

0 40 80 120 160 200 240 280
Time (s)

0

2k

4k

6k

8k

10k

Th
ro

ug
hp

ut
 (

cm
d/

s)

Round-Robin, 10 nodes (3 faulty)
Carousel, 10 nodes (3 faulty)

0 40 80 120 160 200 240 280
Time (s)

0

2

4

6

8

10

12

14

La
te

nc
y

(s
)

Round-Robin, 10 nodes (3 faulty)
Carousel, 10 nodes (3 faulty)

Fig. 3. Comparative performance of HotStuff equipped with Carousel and with the
baseline round-robin when gradually crashing nodes through time. The input trans-
actions rate is fixed to 10,000 tx/s; 1 party (up to a maximum of 3) crashes roughly
every minute. WAN measurements with 10 parties, 500KB maximum block size and
512B transaction size.

7 Conclusions

Leader-rotations mechanisms in chaining-based SMR protocols were previously
overlooked. Existing approaches degraded performance by keep electing faulty
leaders in crash-only executions. We captured the practical requirement of leader-
rotation mechanism via a Leader-utilization property, use it define the Leader-
Aware SMR problem, and described an algorithm that implements it. That
is, we presented a locally executed algorithm to rotate leaders that achieves
both: Leader-utilization in crash-only executions and Chain-quality in Byzan-
tine ones. We evaluated our mechanism in a Hotstuff-based open source system
and demonstrated drastic performance improvements in both throughput and
latency compared to the round-robin baseline.

16 S. Cohen et al.

References

1. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system
for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference,
pages 1–15, 2018.

2. Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, and Dahlia
Malkhi. Twins: White-glove approach for bft testing. arXiv preprint
arXiv:2004.10617, 2020.

3. Dan Boneh, Manu Drijvers, and Gregory Neven. The modified BLS multi-signature
construction. https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.
html, 2018.

4. Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzantine con-
sensus live. In 34th International Symposium on Distributed Computing (DISC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

5. Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, 2016.

6. Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
7. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,

volume 99, pages 173–186, 1999.
8. Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains.

In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 1–11, 2020.

9. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

10. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Annual international conference on the theory and
applications of cryptographic techniques, pages 281–310. Springer, 2015.

11. Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness
for byzantine consensus. In Annual International Cryptology Conference, pages
451–480. Springer, 2020.

12. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
In Communications of the ACM, volume 21, page 558–565. 1978.

13. Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
14. Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolić.
{XFT}: Practical fault tolerance beyond crashes. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), pages 485–500,
2016.

15. Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman.
Cogsworth: Byzantine view synchronization. arXiv preprint arXiv:1909.05204,
2019.

16. Oded Naor and Idit Keidar. Expected linear round synchronization: The missing
link for linear byzantine smr. In 34th International Symposium on Distributed
Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

17. Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
pages 305–319, 2014.

18. Artyom Sharov and Alexander Shraer Arif Merchant Murray Stokely. Take me to
your leader! online optimization of distributed storage configurations. Proceedings
of the VLDB Endowment, 8(12), 2015.

https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

Be Aware of Your Leaders 17

19. Alexander Spiegelman. In search for a linear byzantine agreement. arXiv preprint
arXiv:2002.06993, 2020.

20. Alexander Spiegelman, Arik Rinberg, and Dahlia Malkhi. Ace: Abstract consensus
encapsulation for liveness boosting of state machine replication. In 24th Interna-
tional Conference on Principles of Distributed Systems (OPODIS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

21. The Diem Team. Diembft v4: State machine replication in the diem
blockchain. https://developers.diem.com/docs/technical-papers/

state-machine-replication-paper.html.
22. Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–356,
2019.

https://developers.diem.com/docs/technical-papers/state-machine-replication-paper.html
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper.html

18 S. Cohen et al.

Appendix A Correctness

Lemma 9. If choose leader returns the same honest party at all honest parties
for infinitely many rounds, then each honest party commits an unbounded number
of blocks.

Proof. If choose leader returns the same honest party at all honest parties
for infinitely many rounds, then there are infinitely many rounds after GST for
which it does so. Let r be such a round. By the Pacemaker guarantees, all honest
parties make LBR-synchronized(`) invocations with the same honest leader `
returned from the choose leader procedure. By the LBR Progress property,
they all return a certified block B and commit it at line 6.

Lemma 1. In a crash-only execution, let r be a round with k ≥ 2f + 1 LBR-
synchronized(`) invocations, such that ` is alive at round r, then these k invoca-
tions return a certified B with round number r authored by `.

Proof. Let π1 be a crash-only execution, such that round r has k ≥ 2f + 1
LBR-synchronized(`) invocations with a leader ` that is alive at round r. If ` is
honest, then the LBR Progress property concludes the proof.

Otherwise, ` is faulty and by definition it crashes in round > r. Let π2 be a
crash-only execution that is identical to π1 until ` crashes, and the rest of π2 is
an arbitrary execution where the honest parties in π1 remain honest but ` never
crashes and is also honest. Thus, in π2 the preconditions of the LBR Progress
property hold and all k LBR-synchronized(`) invocations return a certified B
with round number r authored by `.

An LBR(r, `) invocation by any party p completes within ∆l time, and
starts immediately after Pacemaker’s new round(r) notification at p (because
choose leader is computed locally and takes 0 time). By Pacemaker’s guaran-
tees, no party receives new round(r+1) notification until ∆p = ∆l time after the
last new round(r+1) notification at some party, hence all LBR(r, `) invocations
must complete before any party receives a new round(r + 1) notification.

π1 and π2 are identical until ` crashes, which must happen after ` receives
its new round(r + 1) notification from the Pacemaker. This is because ` is alive
in round r and follows the protocol, invoking LBR in round r+1 after receiving
the new round(r + 1) notification. As a result, π1 and π2 are indistinguishable
to all LBR(r, `) invocations, and the k LBR-synchronized(`) invocations in π1
return certified block B with round number r authored by ` as in π2, as desired.

	Be Aware of Your Leaders

